

Date Planned ://_	Daily Tutorial Sheet - 13	Expected Duration : 90 Min		
Actual Date of Attempt ://	Level - 3	Exact Duration :		

Actual Date of Attempt ://				Level - 3			Exact Duration :					
*145.	Which	ch of the following pairs have approximately the same atomic radii?										
	(A)	Zr and Hf	(B)	Al and	Mg	(C)	Al and Ga	(D)	Na and Ne			
*146.	The first ionisation energy of first atom is greater than that of second atom, whereas reverse order is true											
	for their second ionisation energy. Which set of elements is in accordance to above statement?											
	(A)	C, B	(B)	P, S		(C)	Be, B	(D)	Mg, Na			
*147.	Ionization energy of an element is:											
	(A)	(A) Equal in magnitude but opposite in sign to the electron gain enthalpy of the cation of the element										
	(B)	Same as electron affinity of the element										
	(C)	energy required to remove one valence electron from an isolated gaseous atom in its ground										
		state										
	(D)											
		element										
*148.	Select the correct order of periodic properties of species:											
	(A)	$Fe^{2+} < Fe^{3+}$:	ionic ra	dii		(B)	N < O : seco	nd ionisa	tion energy			
	(C)	Cu < Zn : ato	us	(D) In $<$ Tl : first			ionisation energy					
*149.	The sum of ${\rm IE}_1$ and ${\rm IE}_2$, ${\rm IE}_3$ and ${\rm IE}_4$ for element P and Q are given below:											
		$\mathrm{IE}_1 + \mathrm{IE}_2$			$IE_3 + I$	$\mathbf{E_4}$						
	(P)	2. 45			8.82							
	(Q)	2.85 6.11										
	Then according to the given information the correct statement(s) is/are:											
	(A)	$P^{2+} \ is \ more$	stable tha	an Q ²⁺		(B)	P ²⁺ is less s	table thai	n Q^{2+}			
	(C)	P ⁴⁺ is more s	stable tha	ın Q ⁴⁺		(D)	P ⁴⁺ is less st	s less stable than Q^{4+} .				
*150.	Consid	Consider the successive ionisation energy for an element 'A'.										
	${\rm IE}_1, {\rm IE}_2, {\rm IE}_3, {\rm IE}_4, {\rm IE}_5 \ \ {\rm are} \ 100 \ {\rm eV}, \ 150 \ {\rm eV}, \ 181 \ {\rm eV}, \ 2000 \ {\rm eV}, \ 2200 \ {\rm eV}.$											
	Select correct statement(s) for element 'a':											
	(A)	Element 'A' n	nay be m	etal		(B)	Element 'A' r	nay form	trivalent cation			
	(C)	Oxide of elem	ay be am	amphoteric (D) Element 'A' r			may be non-metal					